西北农林科技大学微生物研究中心简介
西北农林科技大学微生物研究中心于2005年3月经学校批准成立,主要依托西北农林科技大学生命科学学院,现任主任为韦革宏教授。
1.宗旨
面向农业绿色发展和国家粮食安全重大战略需求,立足我国西北旱区,针对农业微生物优质产品缺乏、自主创新不足、关键技术研发滞后等问题,以实现我国农业微生物种质资源和产品创新引领为使命,创建农业微生物高效分离筛选技术,解析农业核心微生物结构与功能,阐明微生物群落调控与构建机制,突破农业微生物-宿主-环境互作机制等科学问题与关键核心技术,选育、改良和创造新型农业微生物种质资源,创制微生物菌肥、微生物生防剂、农业环境修复制剂、微生物活性代谢产物等新型农业微生物产品,打造农业微生物领域战略科技力量,服务于我国农业与环境的可持续发展。
2.研究方向与内容
(1) 农业与环境微生物资源挖掘和利用:包括西北地区盐碱、干旱、沙漠等极端环境中微生物资源和基因资源的分布规律;不同作物根际固氮菌、解磷菌、生防菌的挖掘与应用基础理论与技术研究;功能性农业微生物种质资源的改良和创造;农业微生物新产品创制。
(2) 微生物群落多样性与生态功能调控技术:微生物群落的环境响应规律与适应机制;农业微生物群落的结构与功能解析;土壤与作物核心微生物群落的构建与调控。
(3) 农业微生物-宿主-环境互作机制:包括微生物与环境互作机制;根际微生物促进作物逆境适应机制;微生物群落调控与土壤肥力提升机制。
(4) 污染生态环境的微生物修复机理与技术:微生物与农业废弃物资源化利用;新型污染物的微生物降解及其机制;农田有机和无机污染物的植物与微生物协同修复技术。
3.研究团队与成果
研究中心现有研究人员35人,其中教授12人,副教授16人。其中,教育部“长江学者”特聘教授1人,国家“863计划”项目首席专家1人,国家杰出青年基金获得者2人,中组部“万人计划”科技创新领军人才2人,国家优秀青年基金获得者1人,教育部“新世纪优秀人才支持计划”2人,陕西省杰出青年3人,汇集了微生物学、植物学、土壤学、环境科学、生物信息学等相关学科领域的科教人员,已形成了以国家级人才领衔,中青年骨干为主体的一支结构合理、学历层次高、技术力量雄厚的教学科研队伍。
研究中心近年来承担国家及省部级项目40余项,包括国家863计划项目、青年科学家项目、国家杰出青年基金、国家优秀青年基金、国家基金委重点项目、国家973课题、重点研发计划课题等,在PNAS、Nature Communications、The ISME Journal、Microbiome、Environmental Science & Technology、Global Change Biology、Plant Cell and Environment等国际知名刊物上发表SCI论文200余篇,出版教材5部,获批国家专利20余件。以第一主持单位获陕西省科学技术一等奖1项,陕西高等学校科学技术研究优秀成果特等奖1项,国家教学成果二等奖1项,陕西省教学成果特等奖1项,同时,获批旱区土壤微生物组与土壤健康学科创新引智基地1个。研究中心已培养研究生800余名,现有在读研究生120余人,其中博士生48人,硕士生72人,是农业微生物学领域重要的科研与人才培养基地。
4.首席专家
韦革宏,生命科学学院教授,长江学者特聘教授、国家杰出青年科学基金、中组部万人计划科技创新领军人才、国家“863”计划项目首席专家。兼任国际根瘤菌与土壤杆菌多样性及分类分委员会委员、中国微生物学会农业微生物专业委员会副主任、中国微生物学会环境微生物专业委员会委员、国家自然科学基金委地学部评审专家。研究方向为土壤微生物组与土壤健康、微生物组与植物互作等,主要围绕着“土壤微生物多样性及其环境适应机制”的重大科学问题,致力于深入解析旱区根际土壤微生物与生态环境及作物的互作机制,创新微生物利用的关键技术,旨在突破限制旱区农业绿色发展的科技瓶颈,促进土壤健康和质量提升。先后承担了国家杰出青年基金、国家自然科学基金重点项目、国家自然科学基金区域创新发展联合基金重点支持项目、国家863项目、国家重点研发计划课题、全国优秀博士学位论文作者专项基金、农业科研杰出人才及其创新团队等课题30多项。在The ISME Journal、Microbiome、Global Change Biology、Environmental Science & Technology、Plant Cell and Environment等刊物发表SCI论文100余篇,获陕西省科学技术一等奖1项,国家教学成果二等奖1项,出版专著1本,教材2部。
5. 代表性学术论文
[1] Zhu LF, Xu L, Wang CG, Li C, Li M, Liu Q, Wang X, Yang W, Pan D, Hu L, Yang Y, Lu Z, Wang Y, Zhou D, Jiang Z & Shen XH. (2021) T6SS translocates a micropeptide to suppress STING-mediated innate immunity by. PNAS 118.
[2] Si MR, Zhao C, Burkinshaw B, Zhang B, Wei DW, Wang Y, Dong TG & Shen XH (2017) Manganese scavenging and oxidative stress response mediated by type VI secretion system in Burkholderia thailandensis . PNAS 114: E2233-E2242.
[3] Song L, Pan JF, Yang YT, Zhang ZX, Cui R, Jia SK., Wang Z, Yang CX, Xu L, Dong TG, Wang Y. and Shen XH. (2021) Contact-independent killing mediated by a T6SS effector with intrinsic cell-entry properties. Nature Communications 12.
[4] Wang DD, Zhu LF, Zhen XK, Yang DY, Li CF, Chen YT, Wang HN, Qu YC, Liu XZ, Yin YL, Gu, HW, Xu L, Wan CX, Wang Y, Ouyang SY and Shen XH. (2022) A secreted effector with a dual role as a toxin and as a transcriptional factor. Nature Communications 13.
[5] Li SY, Sun HX, Li JH, et al. (2022) Autoinducer-2 and bile salts induce c-di-GMP synthesis to repress the T3SS via a T3SS chaperone. Nature Communications 13.
[6] Lin JS, Zhang WP, Cheng JL, Yang X, Zhu KX, Wang Y, Wei GH, Qian PY, Luo ZQ & Shen XH (2017) A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition. Nature Communications 8.
[7] Zhang L, Li SY, Liu XZ, Wang Z, Jiang M, Wang R, Xie L, Liu Q, Xie X, Shang D, Li M, Wei Z, Wang Y, Fan C, Luo ZQ, Shen XH. (2020) Sensing of autoinducer-2 by functionally distinct receptors in prokaryotes. Nature Communications 11.
[8] Li SY, Yang SS, Wei XM, Jiao S, Luo W, Chen WM & Wei GH (2023) Reduced trace gas oxidizers as a response to organic carbon availability linked to oligotrophs in desert fertile islands. ISME Journal 17: 1257-1266.
[9] Li CF, Zhu LF, Wang DD, et al. (2022) T6SS secretes an LPS-binding effector to recruit OMVs for exploitative competition and horizontal gene transfer. ISME Journal 16: 500-510.
[10] Yue H, Yue WJ, Jiao S, Kim H, Lee YH, Wei GH, Song WN & Shu DT (2023) Plant domestication shapes rhizosphere microbiome assembly and metabolic functions. Microbiome 11.
[11] Liu Y, Wang H, Qian X, Gu J, Chen WM, Shen XH, Tao SH, Jiao S & Wei GH (2023) Metagenomics insights into responses of rhizobacteria and their alleviation role in Licorice allelopathy . Microbiome 11.
[12] Liu XZ, Liu QM, Sun SH, Sun HX, Wang Y, Shen XH & Zhang L (2022) Exploring AI-2-mediated interspecies communications within rumen microbial communities. Microbiome 10.Li ZF, Bai XL, Jiao S, Li YM, Li PR, Yang Y, Zhang H & Wei GH (2021) A simplified synthetic community rescues Astragalus mongholicus from root rot disease by activating plant-induced systemic resistance. Microbiome 9.
[13] Jiao S, Chen WM, Wang JL, Du NN, Li QP & Wei GH (2018) Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome 6.
[14] Jiao S, Qi JJ, Jin CJ, et al. (2022) Core phylotypes enhance the resistance of soil microbiome to environmental changes to maintain multifunctionality in agricultural ecosystems. Global Change Biology 28: 6653-6664.
[15] Kong WB, Wei XR, Wu YH, et al. (2022) Afforestation can lower microbial diversity and functionality in deep soil layers in a semiarid region. Global Change Biology 28: 6086-6101.
[16] Jiao S, Chen WM & Wei GH (2022) Core microbiota drive functional stability of soil microbiome in reforestation ecosystems. Global Change Biology 28: 1038-1047.
[17] Jiao S, Lu YH & Wei GH (2022) Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. Global Change Biology 28: 140-153.
[18] Peng ZH, Liang CL, Gao M, Qiu Y, Pan YJ, Gao H, Liu Y, Li XM, Wei GH & Jiao S (2022) The neglected role of micronutrients in predicting soil microbial structure. Npj Biofilms and Microbiomes 8.
[19] Chen BB, Xiong W, Qi JJ, et al. (2021) Trophic interrelationships drive the biogeography of protistan community in agricultural ecosystems. Soil Biology & Biochemistry 163.
[20] Zhang BG, Zhang J, Liu Y, Shi P & Wei GH (2018) Co-occurrence patterns of soybean rhizosphere microbiome at a continental scale. Soil Biology & Biochemistry 118: 178-186.
[21] Cao Y, Wang ET, Tong WJ, Qiao YJ, Zhao L, Chen WM & Wei GH (2017) Population structure of Rhizobium etli -like strains nodulated with Phaseolus vulgaris in two ecoregions of China. Soil Biology & Biochemistry 112: 14-23.
[22] Jiao S, Liu ZS, Lin YB, Yang J, Chen WM & Wei GH (2016) Bacterial communities in oil contaminated soils: Biogeography and co-occurrence patterns. Soil Biology & Biochemistry 98: 64-73.
[23] Chen S, Wang Y, Gao JM, et al. (2023) Agricultural tillage practice and rhizosphere selection interactively drive the improvement of soybean plant biomass. Plant Cell and Environment 46: 3542-3557.
[24] Wang L, Yang JY, Tan WJ, Guo YL, Li JQ, Duan CT, Wei GH & Chou MX (2023) Macrophage migration inhibitory factor MtMIF3 prevents the premature aging of Medicago truncatula nodules. Plant Cell and Environment 46: 1004-1017.
[25] Huo HB, Zong L, Liu Y, Chen WF, Chen J & Wei GH (2022) Rhizobial HmuS as a heme-binding factor is required for optimal symbiosis between Mesorhizobium amorphae CCNWGS0123 and Robinia pseudoacacia . Plant Cell and Environment 45: 2191-2210.
[26] Liu L, Tsyusko OV, Unrine JM, Liu S, Liu YD, Guo LL, Wei GH & Chen C (2023) Pristine and sulfidized zinc oxide nanoparticles promote the release and decomposition of organic carbon in the legume rhizosphere. Environmental Science & Technology 57: 8943-8953.
[27] Hao XL, Xie P, Zhu YG, Taghavi S, Wei GH & Rensing C (2015) Copper tolerance mechanisms of Mesorhizobium amorphae and its role in aiding phytostabilization by Robinia pseudoacacia in copper contaminated soil. Environmental Science & Technology 49: 2328-2340.
[28] Chen C, Unrine JM, Hu YW, Guo LL, Tsyusko OV, Fan Z, Liu S & Wei GH (2021) Responses of soil bacteria and fungal communities to pristine and sulfidized zinc oxide nanoparticles relative to Zn ions. Journal of Hazardous Materials 405.
[29] Jiao S, Zhang BG, Zhang GZ, Chen WM & Wei GH (2021) Stochastic community assembly decreases soil fungal richness in arid ecosystems. Molecular Ecology 30: 4338-4348.
[30] Shu DT, Yue H, He YL & Wei GH (2018) Divergent assemblage patterns of abundant and rare microbial sub-communities in response to inorganic carbon stresses in a simultaneous anammox and denitrification (SAD) system. Bioresource Technology 257: 249-259.
[31] Shu DT, Zhang BG, He YL & Wei GH (2018) Abundant and rare microbial sub-communities in anammox granules present contrasting assemblage patterns and metabolic functions in response to inorganic carbon stresses. Bioresource Technology 265: 299-309.
[32] Yue H, Zhang YY, He YL, Wei GH & Shu DT (2019) Keystone taxa regulate microbial assemblage patterns and functional traits of different microbial aggregates in simultaneous anammox and denitrification (SAD) systems. Bioresource Technology 290..
2023年10月30日更新